找货源,电子商务,电商运营,跨境电商网址导航 - 运营网

阿里达摩院提出时序预测新模型

07-13

浏览量:76

ICML是机器学习领域的顶级学术会议,达摩院决策智能实验室的论文《FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting》关注了机器学习领域的经典问题:时序预测(Time Series Forecasting)。

近日,阿里达摩院提出了一种长时序预测的新模型FEDformer,精准度比业界最优方法提升14.8%以上,模型已应用于电网负荷预测。相关论文已被机器学习顶会ICML2022收录。

阿里达摩院提出时序预测新模型

据了解,ICML是机器学习领域的顶级学术会议,达摩院决策智能实验室的论文《FEDformer: Frequency Enhanced Decomposed Transformer for Long-term Series Forecasting》关注了机器学习领域的经典问题:时序预测(Time Series Forecasting)。

时间序列预测,意思是指利用历史数据预测未来信息。预测可分为短期、中期和长期预测,需要预测的时间窗口越长,预测难度就越大。这项技术在气象、电力、零售、交通等诸多行业有广泛应用。

传统的时序预测模型一般采用LSTM、CNN等方法,精准度和使用场景都较为有限,无力处理大规模数据。

近年来,研究人员开始将transformer模型引入长时序预测,但效果仍不够理想,该模型核心中的注意力机制模块对时序数据不够敏感。

此次阿里达摩院提出的新模型FEDformer融合了transformer和经典信号处理方法。例如,利用傅立叶/小波变换将时域信息拆解为频域信息,让transformer更好地学习长时序中的依赖关系;FEDformer也能排除干扰,具有更好的鲁棒性。

新模型还专门设计周期趋势项分解模块,通过多次分解以降低输入输出的波动,进一步提升预测精度。

实验证明,达摩院新模型在电力、交通、气象等6个标准数据集上均取得最佳纪录,预测精准度较此前业界最佳模型分别提升14.8%(多变量)和22.6%(单变量)。

目前该模型已走出实验室,在区域电网完成概念验证,明显提升电网负荷预测准确率。

如今,基于自研的时序预测、优化求解器MindOpt、安全强化学习等底层技术,达摩院打造的绿色能源AI,已逐步落地全国多家电网和发电企业,促进绿色能源消纳和电网安全运行。

值得一提的是,天眼查资料显示,阿里巴巴达摩院(杭州)科技有限公司7月1日公开一项“机器客服训练系统及其方法、语音回复方法和电子设备”专利,申请公布号为CN114692891A,申请日期为2022年1月29日。

该专利摘要显示,本申请提供一种机器客服训练系统及其方法、语音回复方法和电子设备。该机器客服训练系统包括:机器客服模型、用户模型、回报参数配置组件和终止组件。

评论内容: